
1. Introduction
Nearly a quarter of the atmospheric carbon dioxide (CO2) burden is controlled by terrestrial biospheric CO2 
fluxes, which are currently estimated to constitute a global sink of 3.4  ±  0.9  PgC  yr−1 during the period of 
2010–2019 (Friedlingstein et al., 2020; Schimel et al., 2001). Global biospheric CO2 fluxes are comparatively 

Abstract The spatiotemporal variability of terrestrial biospheric carbon dioxide (CO2) fluxes over South 
Asia has large uncertainty. The Orbiting Carbon Observatory 2 (OCO-2) satellite provides much-needed 
retrievals of column-average CO2 on a global-scale, with the highest sensitivity to surface CO2 fluxes and 
spatiotemporal resolution available to-date. This study conducted global inverse model simulations, assimilating 
in situ (IS) data and OCO-2 retrievals, to assess optimized CO2 net ecosystem exchange (NEE) fluxes for South 
Asia. Annual Net Biome Exchange (NBE = NEE + biomass burning) fluxes over South Asia were estimated 
to be near neutral (0.04 ± 0.14 PgC yr−1) using both IS and OCO-2 observations. The most robust result found 
by assimilating OCO-2 observations was the constraint imposed on the seasonal cycle of NBE fluxes. The 
amplitude of the seasonal cycle of NEE was found to be larger than previously assumed. The OCO-2 inversion 
led to an NBE seasonal amplitude of 0.34 PgC month−1, which was larger compared to IS constrained NBE 
(0.19 PgC month−1) and MsTMIP ensemble mean NEE (0.16 PgC month−1). Moreover, OCO-2 data imposed a 
phase shift in the NBE seasonal cycle predicted by the prior model. The larger magnitude of NEE seasonality, 
and phase shift, simulated when assimilating OCO-2 observations are in general agreement with previous 
studies assimilating regional aircraft observations in addition to global IS observations. This result suggests that 
OCO-2 provides valuable data that allows for the estimate of NBE on a regional scale in a similar manner as 
regional in situ aircraft networks.

Plain Language Summary The terrestrial biosphere plays a significant role in the global carbon 
budget. As biosphere-atmosphere exchange is one of the largest sources of uncertainty in the global carbon 
cycle, it is important that we better understand the sources and sinks of biospheric carbon dioxide (CO2). A 
major limitation for estimating CO2 fluxes from the terrestrial biosphere has historically been the scarcity of 
measurement data. However, to alleviate this issue, NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite 
was launched in 2014 with the goal to improve our understanding about the regional exchange of CO2 between 
the terrestrial biosphere and atmosphere. This study applied OCO-2 data focusing on South Asia, a region with 
highly uncertain spatiotemporal variability of terrestrial biospheric fluxes. When using OCO-2 data in this 
study, a larger seasonal amplitude of biospheric CO2 fluxes was estimated compared to what has previously 
been assumed for this region. A noticeable difference in the temporal variability of the CO2 flux seasonality 
was also determined when using satellite data. The results of this study suggest that OCO-2 provides data 
sufficient for estimating biospheric CO2 fluxes at a regional scale in a similar manner as regional aircraft 
networks.
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better constrained than regional-scale fluxes as large uncertainties still exist 
for regional estimates of land-air CO2 exchange (Bastos et al., 2020; Schimel 
et al., 2015), especially over the tropical regions (Gaubert et al., 2019; Gurney 
et al., 2002; Peylin et al., 2013). Accurate regional-scale biospheric CO2 flux 
estimates are essential for developing policies to mitigate rapidly increasing 
fossil fuel CO2 emissions (Ciais et al., 2014; Friedlingstein et al., 2014; Peters 
et al., 2020). Atmospheric inverse models assimilating global in situ obser-
vations (Ciais et al., 2010; Peylin et al., 2013) and satellite column retrievals 
(Crowell et al., 2019; Houweling et al., 2015) are currently used to optimize 
global and regional CO2 fluxes through “top-down” inversion frameworks 
(Newsam & Enting, 1988). However, the spatial and temporal gaps in ob-
servational data over certain regions impose uncertainties on regional-scale 
flux estimations (Byrne et al., 2017; Liu et al., 2014). South Asia (see Fig-
ure 1; defined as the region comprising India, Pakistan, Bangladesh, Nepal, 
Sri Lanka, and Bhutan) is such a region with sparse observations, which im-
pedes the accurate quantification of regional CO2 fluxes and seasonal var-
iability of net ecosystem exchange (NEE) fluxes (Chakraborty et al., 2020; 
Patra et al., 2013; Thompson et al., 2016). “Bottom-up” NEE estimates from 
terrestrial ecosystem models also have uncertainty over South Asia (Patra 
et  al.,  2013), warranting further studies using ecosystem models, atmos-
pheric inverse models and regional in situ atmospheric CO2 mole fraction 
measurement data for this region. More measurement stations are fortunately 
currently being implemented over this region (e.g., Lin et al., 2015; Nalini 
et al., 2019; Tiwari et al., 2014) with a potential to better constrain regional 
CO2 fluxes in the future.

Understanding the spatiotemporal variability of terrestrial biospheric CO2 
fluxes over South Asia is critical for assessing the global carbon cycle (Peylin 

et al., 2013). This is due to the unique features of this particular region, with distinct Asian monsoonal weath-
er systems influencing biospheric CO2 flux exchange and atmospheric CO2 concentrations (e.g., Bhattacharya 
et al., 2009; Ravi Kumar et al., 2016; Schuck et al., 2010; Tiwari et al., 2014; Tiwari, Revadekar, & Ravi Ku-
mar,  2013; Valsala et  al.,  2013), uncertain impacts from El Niño–Southern Oscillation (ENSO) cycling (Liu 
et al., 2017), and steadily increasing fossil CO2 emissions over the last two decades (Friedlingstein et al., 2020). 
Previous top-down estimates from an ensemble of inverse models show that the South Asian terrestrial biosphere 
is either carbon neutral (Thompson et al., 2016) or a small sink (e.g., Niwa et al., 2012; Patra et al., 2011; Swathi 
et  al.,  2021). Bottom-up ecosystem models predicted a small sink over South Asia during recent years (e.g., 
Gahlot et al., 2017; Patra et al., 2013; Sitch et al., 2015), and a small source over India during the 1901–2010 
period (Rao et al., 2019). An ensemble of top-down and bottom-up flux estimates assessed by Patra et al. (2013) 
found large variability in the estimates of NEE seasonal cycle, with ensemble members predicting peak CO2 
emissions ranging from March to July, and peak uptake ranging from August to October. Three studies (Jiang 
et al., 2014; Niwa et al., 2012; Patra et al., 2011) assimilating in situ data from regional passenger aircraft net-
works (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container project 
[CARIBIC; Brenninkmeijer et al., 2007] and Comprehensive Observation Network for Trace gases by AIrLiner 
project [CONTRAIL; Machida et al., 2008]) also displayed differences among them in estimating the seasonal 
amplitude, and the timing of peak CO2 source and sink (further described in Section 4.3).

Most of the past research efforts focusing on NEE in South Asia lacked regional observations; therefore, further 
studies are needed to understand the inter-annual variability, amplitude, and phase of the seasonal cycle of bio-
spheric CO2 fluxes in this region. The discrepancies in CO2 flux seasonality as estimated by previous studies 
(Patra et al., 2013) could be largely due to the scarcity of surface and airborne CO2 observations over this re-
gion. Therefore, satellite retrievals of atmospheric column-average CO2 dry-air mole fraction (XCO2) data could 
compensate for the lack of in situ (IS) observations to help constrain South Asian NEE estimates. Assimilating 
satellite XCO2 retrievals rather than IS CO2 observations can also be more advantageous because of the lower 
sensitivity of column data assimilations to model transport errors, as compared to IS data assimilations (Basu 
et al., 2018; Crowell et al., 2019; Rayner & O’Brien, 2001).

Figure 1. The South Asia region boundaries (light green) used to aggregate 
CO2 fluxes. The locations of the four flask CO2 measurement stations (Port 
Blair [PBL] Pondicherry [PON], Sinhagad [SNG], and Hanle [HLE]) are 
overlaid (red dots) for reference.
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The Orbiting Carbon Observatory 2 (OCO-2) satellite provides global retrievals of XCO2 starting from 6 Sep-
tember 2014. To date, OCO-2 is the sensor with the highest spatial resolution (∼3 km2) and highest sensitivity 
to surface level CO2 (Crisp et al., 2017) which aids to improve the current understanding of CO2 surface fluxes 
(e.g., Eldering et al., 2017; Liu et al., 2017). An ensemble of top-down global surface CO2 flux estimates based 
on different inverse modeling systems were conducted by Crowell et al. (2019) using version 7 OCO-2 retrievals. 
Crowell et al. (2019) reported larger NEE seasonal cycle amplitudes over the Northern Tropical zonal band (de-
fined as 0°–23°N; which comprises the majority of the South Asia region considered in this study; see Figure 1) 
when constrained by OCO-2, compared to prior biospheric models and IS-based inversions. This larger Northern 
Tropical land flux seasonality estimated by OCO-2 data is in agreement with estimates derived by assimilating 
data from the Greenhouse gases Observing SATellite (GOSAT) instrument (Palmer et al., 2019). Over Tropical 
Asia (region 9 defined by the TransCom-3 project), GOSAT-based inversions revealed stronger seasonality in 
NEE fluxes compared to surface data inversions (Basu et al., 2014). Since Crowell et al. (2019) was published, 
version 9 of the OCO-2 retrieval data has become available up to 2019. This version includes improvements to the 
retrieval algorithm and bias corrections (Kiel et al., 2019; O’Dell et al., 2018) enabling the better quantification 
of global and regional surface CO2 fluxes (Miller & Michalak, 2020). This study is therefore designed to assess 
inverse model fluxes using OCO-2 version 9 retrievals in a sub-region of the Northern Tropical land (South Asia) 
for the first time.

The objective of this study was to report and analyze the constraints imposed by OCO-2 column retrievals on 
the annual mean, interannual variability, and seasonal cycle of South Asian terrestrial biospheric CO2 fluxes. For 
this we conducted global inverse model simulations using OCO-2 XCO2 and global IS observations as part of the 
second OCO-2 Multi-model Intercomparison Project (MIP) using version 9 of the OCO-2 retrievals (hereafter 
OCO-2 v9 MIP). We organize the paper in the following way. Section 2 presents the assimilated observations, 
evaluation datasets, and vegetative indices used for validation. The flux inversion framework and evaluation 
methodology are described in Section 3. We present the evaluation of the flux inversion system using global 
and regional observations, analysis of the South Asian biospheric fluxes, and comparison of fluxes with satel-
lite-derived vegetation indices and previous publications in Section 4. Finally, Section 5 presents our concluding 
remarks. Table 1 shows details of specific terms used in the following sections.

2. Data
The four-dimensional variational (4D-Var) assimilation system with the GEOS-Chem global chemical transport 
model (CTM; Philip et al., 2019) was used to estimate global NEE and oceanic CO2 fluxes on a monthly scale at 
the spatial resolution of the model from 2015 to 2018 (see Section 3). Regionally aggregated NEE and Net Biome 
Exchange (NBE = NEE + unoptimized biomass burning emissions [BBE]) fluxes over the South Asia region 
were assessed. We also conducted an evaluation of the global inversion system using independent observation 
datasets on a global-scale and unassimilated observations over South Asia. Furthermore, monthly mean NBE is 
compared with satellite-based vegetative indices (see Section 2.3) to help interpret the observed seasonal cycle. 

Specific terms used Details

Terrestrial biospheric flux NBE (= NEE + BBE)a

Net CO2 fluxb NBE + fossil fuel + oceanic flux

Seasonal amplitude Absolute magnitude of the difference between the 
maximum and minimum of monthly mean values

Multi-year monthly mean Mean of monthly flux for 2015–2018

SD of monthly NBEc Standard deviation of monthly NBE for 2015–2018

Multi-year mean NBE Mean of annual NBE values for 2015–2018

Annual NBE anomaly Annual NBE minus multi-year mean NBE
aNEE, BBE, and NBE refer to net ecosystem exchange flux, biomass burning emissions, and net biome exchange (NEE + BBE), respectively. bThe net flux over South 
Asia is the sum of NBE and fossil fuel emissions as no ocean grids are included in the South Asian terrestrial region. cSD of monthly NBE reflects the inter-annual 
spread in the monthly mean values.

Table 1 
Details of Specific Terms Used in This Study
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The following section describes the observational data used in the data assimilation system (Section 2.1), unas-
similated observations used to perform an independent evaluation of the optimized fluxes (see Section 2.2) and 
satellite-based vegetative indices used to compare with NEE flux seasonality (Section 2.3).

2.1. Assimilated Data

2.1.1. OCO-2 Retrievals

The OCO-2 satellite follows a sun-synchronous polar orbit along the Afternoon Constellation (A-train) of Earth 
Observing Satellites (EOS), providing retrievals on a global scale with a local satellite overpass time of ∼1:30 
pm (Crisp et al., 2017). The observing modes of OCO-2 soundings considered in this study are Land Nadir (LN) 
and Land Glint (LG). We do not report on assimilations using the OCO-2 Ocean Glint observing mode due to 
unresolved biases in the retrievals (personal communication from the OCO-2 science team; Crowell et al., 2019). 
We use the version 9 OCO-2 retrieval product (O’Dell et al., 2018) as applied in the OCO-2 v9 MIP. Because 
high spatiotemporal resolution OCO-2 soundings do not offer independent pieces of information to global flux 
inversion systems with coarse spatial resolutions, 10-s OCO-2 XCO2 averages of individual soundings were cal-
culated. OCO-2 data retrieval error and model representation error were also calculated, and reported along with 
each 10-s data (Baker et al., 2021; Basu et al., 2018; Crowell et al., 2019).

2.1.2. Global CO2 In Situ Measurements

Global atmospheric CO2 concentration measurements used for IS assimilation were compiled for the OCO-2 
v9 MIP as an Observation Package (ObsPack) Data Product (Masarie et al., 2014) by the National Oceanic and 
Atmospheric Administration (NOAA) Earth Systems Research Laboratory (ESRL). ObsPack presents calibrated 
CO2 measurements from different observing platforms, such as surface flasks, tall towers, and aircrafts operated 
by numerous institutes in a common format. For this study, we applied ObsPack data derived for the OCO-2 v9 
MIP (Peiro et al., 2021). We assimilated ObsPack measurements which were flagged as “assimilable” by a prior 
run of NOAA’s CarbonTracker data assimilation system. Individual assimilable ObsPack measurements were 
provided with measurement error terms, referred to as the Model-Data Mismatch (MDM). An empirical method 
known as an “adaptive model-data mismatch scheme” was used to calculate MDM values for each measurement 
as described in CarbonTracker CT2019 documentation.

2.2. Evaluation Data

2.2.1. Withheld Global CO2 Measurements

For the OCO-2 v9 MIP, ∼3% of the ObsPack data were randomly selected and withheld (not assimilated in IS 
model simulations) for cross-evaluation of the inverse model optimized atmospheric CO2 concentrations. The 
selection scheme for withheld data was designed to make the withheld measurements as independent as possible 
from assimilated measurements (see details in CarbonTracker CT2019 documentation). The withheld ObsPack 
dataset were also provided with a valid MDM value for each measurement in order to evaluate model CO2 fields 
by considering the errors in the measurement data.

2.2.2. Unassimilated Data Over South Asia

We used observations from four surface IS CO2 measurement stations in and around the South Asia region, which 
are not assimilated in the inverse model simulations, to serve as an independent evaluation data source. The sta-
tions provided surface CO2 flask measurements taken from Port Blair (PBL; marine site), Pondicherry (PON; 
coastal site), and Hanle (HLE; mountain site) locations operated by the Council of Scientific and Industrial 
Research Fourth Paradigm Institute (CSIR-4PI, India), with analysis by the Laboratoire des Sciences du Climat 
et de l’Environnement (LSCE, France; Lin et al., 2015). We also used data from the Sinhagad station (SNG; a 
mountain site) operated by the Indian Institute of Tropical Meteorology, India (Tiwari et al., 2014). These flask 
measurements from all four monitoring stations (see locations in Figure 1) were calibrated against WMOX2007 
standards (Lin et al., 2015, 2018).
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2.3. Satellite-Derived Vegetation Indices

For comparing vegetation indices against prior and optimized NEE fluxes over South Asia, we regridded the 
following data from their native spatiotemporal resolution into the spatial resolution of the atmospheric transport 
model (4.0° × 5.0° latitude × longitude) on a monthly scale from 2015 to 2018.

2.3.1. NDVI and EVI

In order to assess the photosynthetic capacity of the South Asian terrestrial biosphere, we use satellite-retrieved 
vegetative indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation In-
dex (EVI; Huete et al., 2002; Tucker et al., 1986). NDVI is derived from satellite-retrieved surface reflectance 
in near-infrared (841–876 nm) and red (620–670 nm) wavelength bands, whereas EVI uses an additional blue 
(459–479 nm) channel (Huete et al., 2002) to account for water vapor absorption. The NDVI and EVI data were 
collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite 
(MOD13C2 Climate Modeling Grid (CMG) Version 6). MODIS NDVI and EVI Level 3 products are at the spa-
tial resolution of 0.05° × 0.05° and are provided at a 16-day temporal average. We retain data flagged as “good 
data” or “marginal data” by the pixel reliability index. Because the prior biosphere model used in this study (see 
Section 3.2) was driven with NDVI retrieved from the Advanced Very High Resolution Radiometer (AVHRR) 
satellite, we also use the NOAA Climate Data Record AVHRR NDVI Version 5 product (Vermote, 2019) to 
inter-compare with MODIS products. The AVHRR NDVI product is at a spatial resolution of 0.05° × 0.05° and 
daily temporal frequency. We avoided data marked by quality assessment flags as “pixels with cloudy, containing 
cloud shadow, over water, over sunglint and at night, and channel 1 or 2 are invalid”.

2.3.2. Solar Induced Fluorescence (SIF)

Satellite retrievals of SIF were also used to investigate the biospheric photosynthetic activity in the South Asia 
region. We used SIF products based on retrievals from the OCO-2 satellite (Sun et al., 2018). This spatially con-
tiguous SIF data, at a spatial resolution of 0.05° × 0.05° and a temporal resolution of 16 days, were derived by 
training the native discontinuous SIF data from OCO-2 and surface reflectance data from MODIS, in a machine 
learning algorithm (Yu et al., 2019a, 2019b). This SIF product was derived using a combination of retrievals 
at two wavelengths: 757 and 771 nm, respectively (Yu et al., 2019b). We also use the version 28 SIF product 
from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument onboard the MetOp-B satellite (Joiner 
et al., 2013, 2014, 2016). Note that GOME-2 has an overpass time around 9:30 am at the equator and SIF was 
retrieved at 740 nm. The GOME-2 SIF product is at a spatial resolution of 0.5° × 0.5° and monthly temporal 
resolution.

3. Model Framework
We conducted a series of global inverse model simulations, and subsequent evaluation of the posterior fluxes, 
to assess the optimized NEE aggregated over South Asia. The horizontal resolution of the model is 4.0° × 5.0°, 
which results in 29 grid box values over the South Asia region (see Figure 1). Note that several previous studies 
employed the same practice of conducting global assimilations and aggregating optimized gridded fluxes to spe-
cific regions (e.g., TransCom-3 regions) to assess regional-scale fluxes (e.g., Basu et al., 2014; Niwa et al., 2012; 
Patra et al., 2011; Swathi et al., 2021; Thompson et al., 2016). The advantages of employing a global inversion 
system for this purpose includes a consistent simulation of atmospheric CO2 growth rate and global CO2 flux 
budget, and the elimination of errors in boundary/initial conditions inherent in regional model simulations. We 
recognize that assimilating satellite column data at a finer spatial resolution (finer than 1° × 1° spatial resolution) 
using regional model simulations (e.g., Villalobos et al., 2021) might better optimize fluxes over a small region. 
However, using regional inversions to invert full-column satellite CO2 data is known to be problematic, due to the 
large fraction of the signal in the full column measurements caused by fluxes outside the regional domain being 
uncorrected in the regional inversion.

Inverse model simulations were conducted by assimilating OCO-2 XCO2 retrievals and global IS observations 
following the protocols of the OCO-2 v9 MIP. Flux inversions were conducted for the years 2015–2018 by as-
similating observations from 6 September 2014 to 31 May 2019. As part of the OCO-2 v9 MIP, we assimilated 
different observational modes separately and in various combinations. However, in this study we focused on 
inversions assimilating IS data (IS-based inversion) and OCO-2 LN + LG (hereafter “OCO-2 inversion” refers to 
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the simulation using just the OCO-2 LN + LG observational mode data). OCO-2 data outside of the 66°N–66°S 
band were not assimilated. We do not estimate posterior error covariance for the OCO-2 MIP experiments, since 
posterior uncertainly estimations (e.g., Bousserez et al., 2015; Liu et al., 2014) are typically not highly reliable 
and also computationally expensive. Instead, for the OCO-2 v9 MIP, the posterior uncertainty is typically rep-
resented by the standard deviation of an ensemble of inversions (Crowell et al., 2019). The following sections 
describe the flux inversion framework and evaluation approach.

3.1. GEOS-Chem Model

The CO2 flux inversion system in this study uses the GEOS-Chem CTM to simulate the transport of CO2 (Bey 
et al., 2001; Nassar et al., 2010; Suntharalingam et al., 2004). For posterior flux calculations, we use the GE-
OS-Chem adjoint, version 35a (Henze et  al.,  2007; Liu et  al.,  2014). The GEOS-Chem forward model (e.g., 
Krishnapriya et al., 2020; Nassar et al., 2010) and GEOS-Chem-based 4D-Var data assimilation system have 
been extensively validated and used for CO2 flux inversions in previous studies (e.g., Bowman et al., 2017; Deng 
et al., 2014; Liu et al., 2017; Philip et al., 2019; Wang et al., 2019). In this study, MERRA-2 assimilated meteorol-
ogy was used to drive the forward model. The MERRA-2 fields were originally at native 0.5° × 0.625° horizontal 
grids and 72 vertical layers. In order to attain reasonable computational speed, we conduct simulations with low 
spatial resolution of 4.0° × 5.0° horizontal grids with 47 vertical layers.

3.2. Prior CO2 Fluxes

In order to provide prior fluxes in the inversion system, we apply fossil fuel usage, oceanic, NEE, and BBE fluxes. 
Hourly fossil fuel data is derived from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda 
et al., 2018), by extrapolating ODIAC beyond year 2017 with world energy statistics, and imposing diurnal and 
weekday/weekend variability based on Nassar et al. (2013). The oceanic, NEE and BBE fluxes generated as a 
prior for the CarbonTracker 2019 (CT2019) data assimilation system (Peters et al., 2007) were used as prior flux-
es in this study. These first-guess fluxes from CT2019 were year-specific and at 3-hr temporal resolutions. These 
products were regridded from native spatial resolutions to the 4.0° × 5.0° resolution of the GEOS-Chem model. 
We use the CT2019 unoptimized three-hourly oceanic CO2 fluxes from the Ocean Inversion Fluxes prior (OIF) 
product described by Jacobson et al. (2007, 2020) and CarbonTracker CT2019 documentation). Prior NEE fluxes 
were from the CT2019 CASA-Global Fire Emissions Database version 4.1s (CASA-GFED4.1s) biosphere model 
(Giglio et al., 2006; Potter et al., 1993; van der Werf et al., 2003, 2006). The three-hourly NEE fluxes were gen-
erated by imposing diurnal variability and monthly smoothing to the monthly NEE from the CASA-GFED4.1s 
model (Jacobson et al., 2020; Olsen & Randerson, 2004). The NDVI data from the AVHRR satellite was used to 
drive the CASA-GFED4.1s model. Note that due to data availability, NEE data for 2018 were set equal to those 
of 2017. Biomass burning fluxes were derived from the CT2019 CASA-GFED4.1s module (Giglio et al., 2013; 
van der Werf et  al.,  2010,  2017) with scaling factors (Mu et  al.,  2011) applied on monthly data to generate 
three-hourly fluxes. Fire count data from the MODIS satellite were used to calculate burned area in GFED4.1s. 
Compared to earlier versions of GFED, the latest GFED4.1s version contains carbon emission from small fires 
(van der Werf et al., 2017).

Table 2 shows the global CO2 flux budgets averaged over the years 2015–2018. The prior net (sum of all sourc-
es) global annual mean CO2 flux of 5.65 PgC agrees with an observation-based estimate of global annual net 
CO2 flux of 5.50  ±  0.15  PgC over the period 2015–2018. The observation-based estimate of global annual 
net CO2 flux over the period 2015–2018 was calculated by multiplying the CO2 concentration growth rate of 
2.59 ± 0.07 ppm (as documented at NOAA-ESRL) with a scale factor of 2.124 PgC ppm−1, as suggested by 
Ballantyne et al. (2012).

3.3. Flux Inversion Framework

The 4D-Var data assimilation system with the GEOS-Chem CTM was used to conduct the CO2 surface flux esti-
mations following Philip et al. (2019). The inversion system minimizes the cost function (Equation 1) iteratively 
to optimize the state vector, σ representing scaling factors to be multiplied with monthly NEE and oceanic fluxes 
in surface grid boxes of the model (x),
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J(σ) = 1
2
(H(σ) − �)T�−1(H(σ) − �) + 1

2
(σ − σa)T�−1(σ − σa) (1)

where σa represents the prior scaling factors (unity) applied to the prior NEE and oceanic fluxes, and 𝐴𝐴 𝐲𝐲 is the 
vector of IS data and OCO-2 XCO2 retrievals over the assimilation time-period. The construction of observa-
tional error covariance (O) and prior error covariance (P) are discussed in Sections 3.4 and 3.5, respectively. The 
observation operator (𝐴𝐴 H ) represents the model-simulated values corresponding to each observational data, 𝐴𝐴 𝐲𝐲 . The 
model-simulated XCO2 corresponding to each OCO-2 data (𝐴𝐴 H ) is calculated by convolving the model CO2 profile 
with the OCO-2 column averaging kernel vector (𝐴𝐴 𝐚𝐚 ),

H = XCO2 (�) + �T (� (σ(�)) − �a) (2)

where f(� (x)) is the model-simulated vertical profile of CO2 interpolated to the retrieval levels of OCO-2. The 
prior vertical profile of CO2 (𝐴𝐴 𝐜𝐜a ) and the prior column CO2 (𝐴𝐴 XCO2 (𝑎𝑎) ) represent prior information used in the 
OCO-2 XCO2 retrieval process (O’Dell et al., 2012).

Oceanic CO2 and NEE fluxes were optimized at a monthly temporal resolution, whereas fossil fuel and biomass 
burning CO2 emissions were kept unoptimized. The diurnal variability of prior NEE and oceanic fluxes was 
included (see Section 3.2) to drive diurnally varying atmospheric CO2 concentrations in the model; however, the 
NEE and oceanic fluxes were optimized on a monthly timescale. In order to reduce the computation time neces-
sary for running 4 yr of simulations, we conduct four parallel inversions for each year from 2015 to 2018. Simula-
tions for each year started from September 1 of the previous year, and ended in March of the following year (end 
date is 31 May 2019 for the simulation year 2018). Therefore, the assimilation window is 19 months (21 months 
for the simulation year 2018) with 4 months of spin-up and 3 months (5 months for the simulation year 2018) of 
spin-down time. For conducting these four parallel inversions for years 2015–2018, we use initial atmospheric 
concentrations of CO2 on September 1 for 2014–2017. The initial concentration for 1 September 2014 were 
generated by running the GEOS-Chem forward model following Philip et al. (2019). Data for September 1 corre-
sponding to years 2015 to 2017 were calculated by upscaling previous year’s values by 0.75% to account for an-
nual growth rate in atmospheric CO2 mole fraction. Four months of spin-up time for each simulation was chosen 
to minimize the impact of initial CO2 concentration on optimized surface fluxes. This model configuration was 
thoroughly tested using Observing System Simulation Experiments as described in Philip et al. (2019).

3.4. Prior Flux Uncertainty

The prior flux error covariance (P) of NEE and oceanic fluxes were assigned as follows. Spatial and temporal 
correlations in the P matrix implemented in some 4D-Var inversion systems (e.g., Basu et al., 2013; Chevalli-
er et al., 2010) were ignored during this study considering the coarse resolution of the model used here (e.g., 
Baker et al., 2010; Deng et al., 2014; Liu et al., 2014). Oceanic prior flux error was assigned to be five times 
the absolute value of monthly oceanic prior fluxes in each surface grid box of the model, in order to account 

Global CO2 budget (PgC yr−1) South Asia CO2 budget (PgC yr−1)

Fossil BBE NEE NBE Ocean Neta Fossil BBE NEE NBE Netb

Prior 10.05 1.59 −2.47 −0.88 ± 0.42c 
(−1.20 ± 5.64)d

−3.52 ± 0.12 
(−2.55 ± 0.99)

5.65 (6.28 ± 5.76) 0.80 0.01 −0.02 −0.01 ± 0.03c 
(−0.01 ± 0.54)

0.79 
(0.79 ± 0.54)

IS 10.05 1.59 −3.86 −2.28 ± 0.94 
(−2.64 ± 2.85)

−2.45 ± 0.26 
(−2.10 ± 0.54)

5.32 (5.29 ± 3.02) 0.80 0.01 0.03 0.04 ± 0.14 
(−0.07 ± 0.68)

0.84 
(0.73 ± 0.68)

OCO-2 10.05 1.59 −2.28 −0.70 ± 0.58 
(−1.39 ± 2.07)

−4.01 ± 0.30 
(−3.28 ± 1.36)

5.35 (5.35 ± 2.51) 0.80 0.01 0.03 0.04 ± 0.14 
(−0.08 ± 0.54)

0.84 
(0.73 ± 0.54)

aNet flux includes NBE, oceanic, and fossil fluxes. bNet flux over South Asia has no oceanic fluxes. cUncertainty values for prior NBE and oceanic fluxes represent the 
standard deviations of multi-year mean values. Whereas, global annual total 1σ prior uncertainties for NEE and oceanic fluxes assumed in the inversion are ∼0.7 and 
∼0.3 PgC yr−1for each year, respectively (Section 3.4). The prior NEE uncertainty assumed over South Asia region is ∼0.14 PgC yr−1 for each year. dValues within the 
parenthesis and italics refers to ensemble mean from the OCO-2 v9 MIP product.

Table 2 
Prior and Posterior Global and South Asian Annual CO2 Flux Budgets (PgC yr−1) Averaged From 2015 to 2018
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for error correlations. This corresponds to a global 1σ uncertainty of ∼0.3 PgC yr−1 for each year. The scaling 
factor was chosen to produce global oceanic uncertainty totals in accordance with the Global Carbon Project 
(GCP) for the years 2015–2018 (Friedlingstein et al., 2019). The prior NEE flux error is calculated as the range 
(difference of flux minimum and maximum) of five different biosphere models (CT2019-CASA-GFED4.1s, 
Lund-Potsdam*Jena [LPJ; Poulter et al., 2014; Sitch et al., 2003], CASA-GFED3 [Potter et al., 1993; Randerson 
et al., 1996; van der Werf et al., 2004, 2010], NASA-CASA [Potter et al., 2003, 2007, 2009; Potter, Klooster, & 
Genovese, 2012; Potter, Klooster, & Genovese, Hiatt, et al., 2012)], and Simple-Biosphere model version 4 [SiB-
4; Denning et al., 1996; Haynes, et al., 2019; Sellers et al., 1986]), applying a scaling factor of 1.35 to represent 
unaccounted-for uncertainty components and keeping an upper bound of five times the absolute value of monthly 
prior NEE range for each model grid cell. This approach of scaling NEE range with 1.35 (and adding an upper 
bound of five times prior NEE) leads to a global NEE flux 1σ uncertainty of ∼0.7 PgC yr−1, so that the global 
annual total uncertainties are generally in agreement with estimates from the GCP for years 2015–2018. The 
GCP calculated uncertainties are 0.7–1.0 PgC yr−1 for the terrestrial biospheric CO2 fluxes and 0.5–0.6 PgC yr−1 
for the oceanic CO2 fluxes (Friedlingstein et al., 2019). Since the GEOS-Chem 4D-Var system optimizes scaling 
factors (Section 3.3), the fractional error was calculated by taking the ratio of absolute prior NEE flux error to 
the absolute value of the NEE flux magnitude, and the square of the fractional error was assigned as the diagonal 
elements of the P matrix.

3.5. Observational Uncertainty

The observational error covariance matrix (O) was specified corresponding to the assimilated in situ CO2 con-
centrations and OCO-2 XCO2 column retrievals following OCO-2 v9 MIP protocols. No observation error corre-
lations between individual IS or 10-s-averaged OCO-2 data were applied in this study, although error correlations 
were accounted for in calculating the uncertainties placed on the 10-s OCO-2 data (Baker et  al.,  2021). The 
MDM values estimated for each IS observation were used in the observational error covariance for IS data. We 
used the quadratic sum of the OCO-2 10-s data retrieval error and model representation error to construct the 
O matrix when assimilating OCO-2 XCO2 data (from variables “xco2_uncertainty” and “model_error” in file 
OCO2_b91_10sec_GOOD_r24.nc4).

3.6. Evaluation of the Flux Inversions

Prior and optimized CO2 fluxes were evaluated indirectly by comparing the prior and posterior CO2 atmospheric 
concentration fields against several global observational datasets and unassimilated observations from four sta-
tions over South Asia (see Figure 1). The prior and posterior model CO2 concentrations and XCO2 values were 
calculated by conducting forward model simulations using the prior and optimized fluxes, respectively, and sam-
pling the model at the spatiotemporal frequency of the observational data. We compare the prior and optimized 
model CO2 fields against (a) withheld ObsPack IS CO2 mixing ratio observations, (b) assimilated ObsPack data, 
and (c) assimilated OCO-2 XCO2 (LN and LG data). The comparison of inversions against withheld ObsPack 
data can be considered fully independent.

The statistical parameters used for model evaluation are normalized mean bias (NMB), standard deviation of the 
error (SDE), root mean square error (RMSE), and correlation coefficient (R). While calculating NMB by com-
paring model simulated CO2 fields (SIM) against ObsPack and OCO-2 observations (OBS), we normalize them 
by the observational error values (MDM) reported for each observation,

NMB =

∑N
i=1

(

SIMi−OBSi
MDMi

)

N
 (3)

where N is the total number of observations. Observational error values (MDM) were available for ObsPack and 
OCO-2 data. The error term RMSE is defined as follows:

RMSE =

√

∑N

i=1
(SIMi − OBSi)

2

N
 (4)
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The accuracy, precision, and uncertainty of the optimized CO2 fields can be assessed by evaluation metrics NMB 
(or MB), SDE, and RMSE, respectively (see Vermote & Kotchenova, 2008). When using data other than the IS 
data collected in the South Asia region for the evaluations, we calculate statistics over the entire globe. Complete 
validation of this inversion system by comparison against individual data streams (e.g., flask vs. aircraft), valida-
tion of optimized CO2 fields over individual regions or latitudinal bands, and over individual monitoring stations 
and campaigns, and comparison against other inverse models are conducted as part of the OCO-2 v9 MIP efforts. 
The validation statistics can be accessed from the OCO-2 v9 MIP website.

4. Results
4.1. Global CO2 Flux

Table 2 shows the multi-year mean global budget of the prior and posterior (IS and LN + LG) CO2 fluxes, and 
corresponding ensemble mean and SD from the OCO-2 v9 MIP (values taken OCO-2 v9 MIP website). The 
optimized net global multi-year mean fluxes (∼5.35 PgC) are lower than the prior budget (5.65 PgC) but are 
still in agreement with observation-based estimate of global annual net CO2 flux over the period 2015–2018 
(5.50 ± 0.15 PgC; see Section 3.2). The partitioning of global land versus global ocean fluxes shows significant 
differences for OCO-2 versus IS-constrained fluxes, with OCO-2 observations leading to a smaller land sink 
(NBE = −0.70 PgC yr−1) compared to the IS-based inversion (NBE = −2.28 PgC yr−1). The OCO-2 v9 MIP 
ensemble mean also depicts similar differences in land-ocean flux partitioning while assimilating OCO-2 versus 
IS data (see Table 2). The large spread (SD) in the posterior NBE and ocean flux estimates in the OCO-2 v9 MIP 
reveals that different transport models fit IS and column XCO2 data differently. In general, Table 2 shows that all 
the flux estimates (NEE, NBE, ocean, and net values) from the model are within the spread (SD) of OCO-2 v9 
MIP ensemble mean values.

Figure 2 shows annual mean and multi-year mean NBE (and anomalies) over the global land. Both IS and OCO-2 
observations produced global land CO2 sinks during 2015–2018 (negative NBE values). Annual NBE anomaly 
signals varied between years, with positive anomaly values for 2015–2016 and negative anomaly values for 
2017–2018. The prior model shows small negative annual NBE anomalies for all years except for 2015. The 
higher NBE anomaly values for 2015–2016 revealed by top-down estimates likely reflects the impact of the 
2014–2016 El Niño event which led to reduced CO2 uptake by the tropical terrestrial biosphere during the dry 
and hot months (Bastos et al., 2018; Liu et al., 2017; Patra et al., 2017). Figure S1 in Supporting Information S1 
shows the seasonal variation of global land NBE, which is consistent with Crowell et al. (2019) and the OCO-2 
v9 MIP results. Prior, and IS- and OCO-2-constrained global NBE fluxes display similar seasonal cycles with a 
large CO2 land sink between May and August, and a moderate source in the remaining months.

Figure 2. Annual and multi-year mean NBE (PgC yr−1, top panels) and annual NBE anomalies (PgC yr−1, bottom panels) over the global land (left column) and South 
Asia region (right column) corresponding to the prior model and posteriors optimized with IS and OCO-2 LN + LG observations (as shown in the xx-axis of each 
panel). Legends show the color of each bar representing annual and multi-year mean values.
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4.2. Annual NBE Over South Asia

Table 2 shows the multi-year mean South Asian carbon budget of the prior and posterior CO2 fluxes. The pos-
terior multi-year mean annual NBE over South Asia is near neutral (0.04 ± 14 PgC yr−1), both when assimi-
lating IS observations or OCO-2 LN + LG observations. The multi-year mean posterior estimates for both the 
IS and OCO-2 assimilations (0.04 PgC yr−1) are close to the prior (−0.01 PgC yr−1); however, the interannual 
variability is higher (see Figure 2). SD values are larger in the IS and OCO-2 posteriors (0.14 PgC yr−1) com-
pared to the prior (0.03 PgC yr−1) as shown in Table 2. The OCO-2 v9 MIP estimated South Asian NBE of 
−0.07 ± 0.68 PgC yr−1 with IS observations and −0.08 ± 0.54 PgC yr−1 with LN + LG observations (Table 2). 
Past studies using global inverse models and bottom-up ecosystem models have predicted an annual mean flux 
for the South Asia region ranging from −0.37 to −0.05 PgC yr−1 (Cervarich et al., 2016; Ciais et al., 2020; Jiang 
et al., 2014; Niwa et al., 2012; Patra et al., 2011, 2013; Thompson et al., 2016) for different time periods (years 
up to 2013; see Table 3). The mean annual flux estimated for the South Asia region in this study (2015–2018) 
is slightly higher than this range (consistent when considering SD values), likely due to the larger positive NBE 
anomalies in 2016–2017 following the 2014–2016 El Niño event (see Figure 2). Direct comparison of region-
al-scale top-down and bottom-up CO2 flux estimates should in fact consider lateral carbon flux sources such as 
crop trade and riverine export (Ciais et al., 2020; Kondo et al., 2020) as noted by Ciais et al. (2021). Overall, the 
multi-year mean annual NBE estimates in this study are comparable with estimates from the OCO-2 v9 MIP and 
previous studies focused on South Asia.

Annual mean and multi-year mean NBE (and anomalies) over South Asia are shown in Figure 2. The IS-con-
strained annual mean NBE shows a CO2 source for 2015 (0.22 PgC yr−1) and sink for 2016 (−0.12 PgC yr−1). This 
differs from the OCO-2-constrained estimates which resulted in a CO2 sink for 2015 (−0.14 PgC yr−1) and source 
for 2016 (0.14 PgC yr−1). Figure 2 reveals contrasting posterior annual NBE anomaly values using IS (positive 
NBE anomaly of 0.19 PgC yr−1 for 2015) versus OCO-2 LN + LG (positive NBE anomaly of ∼0.11 PgC yr−1 for 
2016–2017) observation modes. IS- and OCO-2-constrained NBE for the region were more comparable for 2018 
with both simulating near-neutral biospheres. The absence of IS observations over the South Asia region might 

Study Data assimilated Years considered NBE budget (PgC yr−1)a Other details

Bottom-up

 Ciais et al. (2020)b – 2000–2009 −0.25 ± 0.11 Ensemble of models

 Cervarich et al. (2016) – 2000–2013 −0.22 ± 0.15 Ensemble of models

 Patra et al. (2013) – 2000–2009 −0.19 ± 0.19 Ensemble of models

 Gahlot et al. (2017) – 2000–2012 −0.02 Single model output aggregated over India

 Nayak et al. (2015) – 1981–2006 −0.01c Aggregated over India

Top-down

 Thompson et al. (2016) IS 1996–2012 −0.05 (−0.18 to 0.03) Ensemble of models

 Patra et al. (2011) IS + CARIBIC 2007–2008 −0.37 ± 0.20 Single model output

 Niwa et al. (2012) IS + CONTRAIL 2006–2008 −0.13 Single model output

 Jiang et al. (2014) IS + CONTRAIL 2006–2008 −0.11 ± 0.30 Single model output

 Swathi et al. (2021) IS + regional flask datad 2006–2011 −0.27 to −0.08 Single model output aggregated over India

 OCO-2 v9 MIPe IS 2015–2018 −0.07 ± 0.68 Ensemble of models

 OCO-2 v9 MIP OCO-2 LN + LG 2015–2018 −0.08 ± 0.54 Ensemble of models

 This Study IS 2015–2018 0.04 ± 0.14 Single model output

 This study OCO-2 LN + LG 2015–2018 0.04 ± 0.14 Single model output
aSee respective publications for more details about definitions and individual components considered while calculating CO2 flux budgets shown here, and the specifics 
about the South Asia region boundaries. Special note is added in the fifth column whenever CO2 flux budget values represent India instead of entire South Asia region. 
bValue represents bottom-up net land-atmosphere carbon estimate over south Asia including lateral carbon fluxes (see details in Ciais et al., 2020). cValue denotes long-
term NEE flux over India. dThe flask data from three stations (HLE, PON, and PBL) and hourly continuous data at HLE over South Asia were assimilated along with 
global IS data. eValues taken from OCO-2 v9 MIP website.

Table 3 
Comparison of Multi-Year Mean NBE Over South Asia Obtained in This Study With Other Studies
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have resulted in some of the contrasting features (for years 2015–2016) compared to OCO-2. The positive anom-
aly for 2016–2017 predicted using the OCO-2 LN + LG observations (likely due to the impact of 2014–2016 El 
Niño event), which was not captured when assimilating IS data, illustrates the differences in CO2 flux estimates 
due to varying observational coverage of the two data sources.

4.3. Monthly NBE Over South Asia

Here, we examine the constraints imposed by OCO-2 XCO2 data to the seasonal cycle of terrestrial biospheric 
fluxes over South Asia. Figure 3 shows monthly mean NBE fluxes over South Asia from 2015 to 2018 optimized 
by IS and OCO-2 LN + LG observation modes. It is clear from the figure that the unconstrained biomass burning 
CO2 emission is minor compared to NEE fluxes, suggesting that BBE is not a significant carbon source over 
South Asia. The most striking feature of the monthly NBE fluxes optimized with OCO-2 data is the stronger sea-
sonal amplitude compared to fluxes optimized with IS data and prior fluxes used in the inversions. The IS-con-
strained fluxes also show a larger seasonality compared to prior CASA model fluxes, although the amplitude 
is not as strong as OCO-2 based inversion. OCO-2 optimized NBE seasonal amplitude is largest for years 2016 
(0.44 PgC month−1) and lowest for year 2018 (0.32 PgC month−1). Figure 3 also shows multi-year mean monthly 
NBE fluxes for the South Asia region. The prior and IS-constrained NBE show a seasonal amplitude of 0.11 
and 0.19 PgC month−1

, respectively, whereas OCO-2 resulted in larger seasonal amplitude of 0.34 PgC month−1. 
The magnitude of the NEE seasonality estimated by assimilating OCO-2 data is noticeably larger than our cur-
rent understanding of NEE in this region (represented by the prior NEE used in the model, and ensemble mean 
NEE from the Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP; Fisher, Sikka, 
Huntzinger, Schwalm, & Liu,  2016, Fisher, Sikka, Huntzinger, Schwalm, Liu, Wei, et  al.,  2016; Huntzinger 
et al., 2013, 2018) with a seasonal amplitude of 0.16 PgC month−1; see top panel of Figure 4).

The OCO-2 v9 MIP ensemble mean estimate also depicts similar seasonality with the OCO-2 and IS data assim-
ilations calculated in our model (see the OCO-2 v9 MIP ensemble mean and individual models in Figure S2 in 
Supporting Information S1). It has been shown that differences in vertical transport simulated by the two main 
CTMs used in the OCO-2 v9 MIP (i.e., GEOS-Chem and TM5) can lead to variability in regional optimized 
CO2 flux estimates (Schuh et al., 2019). However, the seasonal distribution and amplitude of NEE in South Asia 
presented in this study is consistent with the majority of ensemble members in the OCO-2 v9 MIP including 

Figure 3. Monthly NBE (PgC month−1, top panel) and multi-year mean monthly NBE (PgC month−1, bottom panel) over South Asia from the prior model (solid black 
line), and posteriors optimized with IS (blue) and OCO-2 LN + LG (red) observations. In the top panel, error bars on the prior fluxes represent prior flux uncertainty 
assumed during the assimilation. The dashed black line in the top panel depicts unoptimized BBE.
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predictions from both GEOS-Chem and TM5 models (Figure S2 in Supporting Information S1). Figure S2c in 
Supporting Information S1 shows that six out of nine inverse models predict posterior CO2 flux estimates con-
strained by OCO-2 LN + LG data have larger seasonality than the assumed priors. Furthermore, this figure shows 
that seven out of nine ensemble members of the v9 OCO-2 MIP had similar phase shifts in South Asian NEE 
seasonality presented in the results of this study.

Another noticeable feature imposed by OCO-2 XCO2 data was the phase shift of the seasonal cycle compared to 
the prior NEE model. OCO-2 data leads to the prediction of a shift in peak CO2 source and sink 1–3 months earli-
er than those predicted by the CASA prior model. OCO-2 optimized NBE shows CO2 release from the biosphere 
from March to May (pre-monsoon season), with a pronounced peak source around April, whereas CASA has a 
broad peak between April and July (pre-monsoon to summer monsoon season) months. The OCO-2 observations 

Figure 4. Comparison of South Asian multi-year mean monthly NBE (PgC month−1) from the prior model (CASA; solid black line), posteriors optimized with IS 
(blue) and OCO-2 LN + LG (red) observations, NBE from the LPJ model (green), and the MsTMIP ensemble mean NEE (“optimal” or “weighted” ensemble mean 
from 15 global land surface models; magenta; top row). These values are further compared with NDVI (unitless) from the AVHRR and MODIS, EVI (unitless) from 
MODIS (middle row), and SIF (W m−2 sr−1 μm−1) from the GOME-2 and OCO-2 (bottom row).
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lead to the largest CO2 uptake at the end of the summer monsoon (September) 
rather than October (start of post-monsoon season) as predicted by the prior 
CASA model. The prediction of the phase shift in seasonal NBE in our model 
agrees with seven out of nine models in the OCO-2 v9 MIP which also predict-
ed peak positive NEE in April, and negative NEE in September (see Figure S2 
in Supporting Information S1).

Figure  4 (top panel) shows that the MsTMIP model ensemble mean, which 
represents our current understanding of bottom-up “climatological” CO2 fluxes 
over this region, has a peak source distributed between March and June, and 
peak drawdown between August and September. While biomass burning fluxes 
of CO2 are small for the South Asia region, the emission of CO2 from fires has a 
peak in March–April (Patra et al., 2013) and could contribute slightly to the flux 
seasonality predicted when assimilating observations. The seasonal agriculture 
crop residue burning source (Jethva et al., 2019) is part of the CASA-GFED-
4.1s prior BBE source applied in this study (van der Werf et al., 2017), and 
does not contributing significantly to the seasonal magnitudes (see total BBE 
source in Figure 3). However, residential biofuel usage is recognized as a sig-
nificant source of carbonaceous aerosols in this region; however, not as a large 
contributor to CO2 (Venkataraman et al., 2005). Limited literature is available 
describing the seasonal variability of biofuel source components in the South 
Asia region. Since residential biofuel emissions are not considered in our prior 
emissions, its contribution could be part of the posterior NEE seasonal mag-
nitude estimated in this study. The CASA-GFED3 inventory (van der Werf 
et al., 2010) as applied in Philip et al. (2019) indicates that biofuel emissions of 
CO2 in South Asia are a relatively small source (∼0.05 PgC yr−1 in 2015 which 
is <10% of fossil fuel emissions and ∼5 times that of BBE emissions used as a 
prior in this study over South Asia), and is likely not the primary contributor to 
the NEE seasonal cycle of amplitude derived here. Apart from these minor con-
tributions from biofuel sources and potentially un-accounted biomass burning 
components, the seasonality in NBE as described in this section is considered 
to be primarily due to terrestrial biosphere processes such as photosynthesis and 
respiration. Note that the seasonal variability of terrestrial biosphere is driven 
by several interrelated variables, such as temperature, solar insolation, rainfall 
(e.g., Braswell et al., 1997). We compare NBE estimates in this study with mul-
tiple satellite-derived vegetative indices in Section 4.5.

Table 4 shows the comparison of NEE seasonality estimated in this study (note 
that we report NEE instead of NBE to be consistent with three previous studies) 
against three previous studies assimilating regional aircraft CO2 measurements 
(CARIBIC and CONTRAIL) in addition to GLOBALVIEW global surface data 
(Jiang et  al.,  2014; Niwa et  al.,  2012; Patra et  al.,  2011). The prior, IS-con-
strained, and OCO-2-constrained NEE (NBE) show a seasonal amplitude of 
0.11 (0.11), 0.18 (0.19), and 0.33 (0.34) PgC  month−1

, respectively. Table  4 
shows that the past three studies displayed differences among them in esti-
mating the seasonal amplitude, and the timing of peak CO2 source and sink 
months. However, all three studies found a strong seasonal NEE amplitude of 
∼0.25–0.29  PgC  month−1 when assimilating regional aircraft CO2 measure-
ments in addition to GLOBALVIEW global surface data (joint inversion using 
surface-based and aircraft-based data). These three previous studies based on 
different transport models, prior biosphere models and passenger aircraft da-
tasets (see details in Table 4) found that the inclusion of regional aircraft data 
into the assimilation system resulted in larger NEE seasonal amplitude (∼0.25–
0.29 PgC month−1), comparable to estimates in this study (0.33 PgC month−1). 
All three past studies constrained with regional aircraft data predicted largest St

ud
y

D
et

ai
ls

 o
f t

he
 st

ud
y

N
EE

 S
ea

so
na

l a
m

pl
itu

de
 

(P
gC

 m
on

th
−

1 )a
M

on
th

s w
ith

 p
ea

k 
CO

2 s
ou

rc
eb

M
on

th
s w

ith
 p

ea
k 

CO
2 u

pt
ak

eb

Tr
an

sp
or

tM
od

el
Pr

io
r 

m
od

el
Ye

ar
s 

si
m

ul
at

ed
Re

gi
on

al
 

da
ta

 u
se

d
Pr

io
r

IS
c

Re
gi

on
al

 
da

ta
 o

r 
O

CO
-2

d
Pr

io
r

IS
Re

gi
on

al
 d

at
a 

or
 O

CO
-2

d
Pr

io
r

IS
Re

gi
on

al
 d

at
a 

or
 O

CO
-2

d

Th
is

 S
tu

dy
G

EO
S-

C
he

m
CA

SA
20

15
–2

01
8

O
CO

-2
0.

11
0.

18
0.

33
A

pr
il–

Ju
ly

A
pr

il
A

pr
il

O
ct

ob
er

O
ct

ob
er

Se
pt

em
be

r

Pa
tra

 e
t a

l. 
(2

01
1)

A
C

TM
e

CA
SA

20
08

CA
R

IB
IC

0.
13

0.
13

0.
25

A
pr

il–
Ju

ly
A

pr
il–

Ju
ly

A
pr

il
O

ct
ob

er
A

ug
us

t–
Se

pt
em

be
r

A
ug

us
t–

Se
pt

em
be

r

N
iw

a 
et

 a
l. 

(2
01

2)
N

IC
A

M
-T

M
f

CA
SA

20
06

–2
00

8
CO

N
TR

A
IL

0.
13

0.
13

0.
29

A
pr

il–
Ju

ly
A

pr
il–

Ju
ne

Ju
ne

g
O

ct
ob

er
O

ct
ob

er
A

ug
us

t–
Se

pt
em

be
r

Jia
ng

 e
t a

l. 
(2

01
4)

TM
5h

B
EP

Si
20

06
–2

00
8

CO
N

TR
A

IL
0.

17
0.

29
0.

29
A

pr
il–

M
ay

A
pr

il–
M

ay
A

pr
il–

Ju
ne

A
ug

us
t–

O
ct

ob
er

Se
pt

em
be

r
Se

pt
em

be
r

a T
he

 s
ea

so
na

l N
EE

 a
m

pl
itu

de
 v

al
ue

s 
fo

r o
th

er
 s

tu
di

es
 a

re
 a

pp
ro

xi
m

at
e 

va
lu

es
 in

fe
rr

ed
 fr

om
 fi

gu
re

s 
in

 th
os

e 
stu

di
es

 (P
at

ra
 e

t a
l.,

 2
01

1 
[F

ig
ur

e 
3]

, N
iw

a 
et

 a
l.,

 2
01

2 
[F

ig
ur

e 
5]

, a
nd

 J
ia

ng
 e

t a
l.,

 2
01

4 
[F

ig
ur

e 
7]

). 
b M

on
th

s 
w

ith
 p

ea
k 

N
EE

 s
ou

rc
e 

an
d 

up
ta

ke
 a

re
 a

ss
es

se
d 

by
 v

is
ua

l i
ns

pe
ct

io
n 

of
 fi

gu
re

s 
in

 th
os

e 
stu

di
es

. A
 ra

ng
e 

of
 m

on
th

s 
(e

.g
., 

A
pr

il–
Ju

ly
) a

re
 p

ro
vi

de
d 

he
re

 w
he

n 
a 

di
sti

nc
t p

ea
k 

co
ul

d 
no

t b
e 

id
en

tif
ie

d 
by

 v
is

ua
l i

ns
pe

ct
io

n 
of

 th
e 

fig
ur

es
. c IS

 re
fe

rs
 to

 th
e 

O
bs

Pa
ck

 d
at

a 
(fo

r t
hi

s 
stu

dy
) o

r t
he

 G
LO

BA
LV

IE
W

-s
ur

fa
ce

 C
O

2 d
at

a 
(fo

r o
th

er
 s

tu
di

es
) a

ss
im

ila
te

d 
in

 th
e 

in
ve

rs
io

ns
. d F

or
 th

re
e 

pr
ev

io
us

 st
ud

ie
s, 

da
ta

 in
 th

is
 c

ol
um

n 
is

 c
or

re
sp

on
di

ng
 to

 jo
in

t i
nv

er
si

on
 a

ss
im

ila
tin

g 
th

e 
G

LO
BA

LV
IE

W
-s

ur
fa

ce
 C

O
2 d

at
a 

an
d 

re
gi

on
al

 p
as

se
ng

er
 a

irc
ra

ft 
da

ta
. F

or
 th

e 
pr

es
en

t s
tu

dy
, d

at
a 

in
 th

is
 c

ol
um

n 
is

 c
or

re
sp

on
di

ng
 to

 th
e 

in
ve

rs
io

n 
as

si
m

ila
tin

g 
O

CO
-2

 L
N

 +
 L

G
 d

at
a.

 e A
C

TM
 =

 A
tm

os
ph

er
ic

 g
en

er
al

 c
irc

ul
at

io
n 

m
od

el
-b

as
ed

 C
he

m
ist

ry
 T

ra
ns

po
rt 

M
od

el
. f N

IC
A

M
-T

M
 =

 N
on

hy
dr

os
ta

tic
 Ic

os
ah

ed
ra

l 
A

tm
os

ph
er

ic
 M

od
el

-b
as

ed
 T

ra
ns

po
rt 

M
od

el
. g L

ar
ge

 C
O

2 s
ou

rc
e 

fo
r A

pr
il–

Ju
ne

 w
ith

 a
 d

ist
in

ct
 p

ea
k 

du
rin

g 
Ju

ne
. h T

M
5 

=
 T

ra
ns

po
rt 

M
od

el
-5

. i B
EP

S 
=

 B
or

ea
l E

co
sy

ste
m

s P
ro

du
ct

iv
ity

 S
im

ul
at

or
.

Ta
bl

e 
4 

C
om

pa
ri

so
n 

of
 th

e 
Ke

y 
Fe

at
ur

es
 o

f S
ou

th
 A

si
an

 N
EE

 S
ea

so
na

l C
yc

le
 O

bt
ai

ne
d 

in
 T

hi
s S

tu
dy

 W
ith

 P
re

vi
ou

s S
tu

di
es



Journal of Geophysical Research: Atmospheres

PHILIP ET AL.

10.1029/2021JD035035

14 of 23

CO2 sources around April (ranges from April to June) which is generally consistent with OCO-2 optimized NEE 
in this study (although OCO-2 resulted in a more pronounced peak source in April). The shift of peak CO2 uptake 
from October (as in CASA prior model) to September is generally consistent with all the three past studies. In 
short, the assimilation of column CO2 observations from the OCO-2 satellite over South Asia indeed added ro-
bust constraints on regional flux estimates, leading to higher terrestrial biospheric CO2 flux seasonal amplitudes 
and a phase shift in seasonal cycle, as found by previous studies assimilating South Asian aircraft-based in situ 
observations. This suggests that OCO-2 data imposes constraints on regional NEE fluxes in a similar manner as 
regional in situ aircraft data and can effectively be used to investigate biospheric carbon processes at spatial scales 
smaller than TransCom-3 regions.

The stronger seasonal cycle imposed by satellite data for the Northern Tropical latitudinal band regions (0°–
23°N; comprising the northern parts of the South Asia region considered in this study) was documented by earlier 
studies based on GOSAT satellite retrievals (Palmer et al., 2019) and version 7 of OCO-2 (Crowell et al., 2019). 
The strong seasonal cycle amplitude of NEE fluxes over a region proximal to South Asia (Tropical Asia region: 
TransCom-3 region 9) was reported by Basu et al. (2014) based on GOSAT data assimilations. Consistent with 
these past studies, this work found strong CO2 flux seasonality over South Asia. Since these regions (Northern 
Tropics, South Asia, and Tropical Asia) have distinct terrestrial biosphere features (e.g., croplands, tropical for-
ests), different natural and/or land-use processes might be causing the larger seasonality over these regions. The 
comparison of OCO-2 optimized fluxes over South Asia with previous studies assimilating regional aircraft data 
(Jiang et al., 2014; Niwa et al., 2012; Patra et al., 2011) reveals that the seasonality and phase shift in monthly 
NBE flux is likely to be realistic.

We conducted several additional sensitivity model simulations to emphasize that the South Asian CO2 flux sea-
sonality results presented in this study are robust and not dependent on the assumed prior model, prior mean NEE 
magnitude/seasonality, or prior error values applied (see Text S1 and Figure S3 in Supporting Information S1 for 
details of these sensitivity model simulations).

4.4. Evaluation of Optimized CO2 Fields

Table 5 summarizes the evaluation statistics of model simulated atmospheric CO2 concentrations and XCO2 val-
ues, using the prior and posterior CO2 fluxes against observations across the globe. The simulated CO2 mole frac-
tions and XCO2 values using prior fluxes show a consistent positive global bias compared to withheld and assim-
ilated ObsPack (1.39 and 1.17 ppm, respectively), and OCO-2 data (1.68 ppm), suggesting an overestimated prior 
flux used in the inverse model. All posterior CO2 and XCO2 values assimilating IS and OCO-2 LN + LG data 
show substantial reductions in NMB and SDE, and corresponding increases in correlation, as compared to prior 
values. A negative bias of −0.03 to −0.48 ppm with SDE values of 3.81–4.40 ppm were obtained while com-
paring IS and OCO-2-constrained CO2 concentrations against withheld ObsPack observations. The comparison 
against both withheld and assimilated ObsPack data leads to similar model performance statistics. The OCO-2-
constrained XCO2 simulated values perform better than IS-constrained XCO2 when compared against assimilated 
OCO-2 LN and LG data (RMSE of 0.97 ppm for OCO-2 vs. 1.25 ppm for IS). In contrast, when compared with 

Global ObsPack CO2
a OCO-2 LN and LG XCO2

NMB (ppm) SDE (ppm) RMSE (ppm) R NMB (ppm)
SDE 

(ppm)
RMSE 
(ppm) R

Nb = 24,898 (773,042)a N = 334,697

Prior 1.39 (1.17)a 4.95 (4.72) 5.50 (5.15) 0.82 (0.81) 1.68 1.47 2.10 0.93

IS −0.03 (−0.06) 3.81 (3.47) 3.81 (3.48) 0.88 (0.88) 0.11 1.25 1.25 0.94

OCO-2 −0.48 (−0.45) 4.40 (4.21) 4.46 (4.26) 0.84 (0.83) −0.06 0.97 0.97 0.96
aStatistical values and N outside parentheses correspond to “withheld” data, while values within the paratheses correspond 
to “assimilated” data. bN is the total number of observations for 2015–2018 used to calculate the statistical parameters in the 
table.

Table 5 
Statistics From the Comparison of Model Simulated Prior and Posterior Atmospheric CO2 Concentrations and XCO2 
Against Global Observations
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withheld or assimilated ObsPack data, the IS-constrained CO2 concentrations (RMSE of 3.81–3.48 ppm) per-
form better than OCO-2-constrained fields (RMSE of 4.46–4.26 ppm). The overall model performance against 
ObsPack and OCO-2 data was comparable to other global models which participated in the OCO-2 v9 MIP).

Figure 5 shows the comparison of OCO-2 retrieved XCO2 versus model-estimated prior and posterior XCO2 av-
eraged over the South Asia region. The seasonal cycle of OCO-2 retrieved XCO2 is larger than simulated XCO2 
using prior fluxes in the forward model. The posterior XCO2 estimated when assimilating either IS or OCO-2 
LN + LG observations agree better with OCO-2 retrieved data, compared to prior model simulated XCO2 values. 
As expected, the LN + LG based posterior XCO2 values had better agreement with OCO-2 retrieved XCO2 com-
pared to IS-based posterior predictions. Figure 5 also shows a noticeable seasonality in the number observations 
over South Asia, with lower number of observations during the summer monsoon season (June-September) due 
to cloud cover obscuring the satellite field of view. We recognize that the temporal variability in observation 
coverage could lead to uncertainties in the optimized flux estimates over South Asia (Byrne et al., 2017; Liu 
et al., 2014). However, since the posterior XCO2 values predicted when assimilating OCO-2 LN + LG observa-
tions agree well with satellite data (that is, assimilated OCO-2 LN + LG data) during all seasons, this suggests 
that OCO-2 observations are sufficient enough to predict robust NEE fluxes throughout the annual cycle.

Figure 6 shows the comparison of model simulated CO2 concentrations against monthly averaged aircraft-based 
data from the CONTRAIL project (Machida et al., 2008) near and downwind of the South Asia region. Since 
CONTRAIL observations over the South Asia region are not available during the time period considered in this 
study (except for a single flight track near Sri Lanka in 2015; see CONTRAIL website), we used free and upper 
tropospheric observations averaged over the latitude bands containing the South Asia region (latitude band be-
tween 4°N and 32°N, longitude band between 57.5°E and 132.5°E, altitude range of ∼5 to 13 km). The unassim-
ilated CONTRAIL data for 2015–2016 available publicly as part of the ObsPack data package (see Section 2.1.2) 
is used here. The seasonality of CONTRAIL CO2 mixing ratios show highest values during May and lowest 
values during September. It is noteworthy that OCO-2 LN and LG XCO2 retrievals averaged over the South Asia 
region in Figure 5 show similar seasonality. The similarity in OCO-2 XCO2 retrievals versus CONTRAIL aircraft 
measurements could be due to the fact that deep convection in this tropical region leads to upper tropospheric 
CO2 being influenced by surface CO2 fluxes. Umezawa et al. (2018) found that the upper tropospheric minimum 
in the Northern Tropical latitudes during August–September months is due to large uptake of CO2 by the South 

Figure 5. Comparison of monthly averaged OCO-2 retrieved LN and LG XCO2 (ppm) over South Asia (region boundaries in Figure 1), and the values simulated from 
the prior model (black line) and those optimized with in situ (IS, blue line), and OCO-2 (LN + LG assimilation, red line) observations. Error bars represent the standard 
deviation of the mean monthly values. The legend contains evaluation statistics of monthly mean values during 2015–2018. The cyan bars represent the total number of 
OCO-2 retrieved LN and LG observations per month. The failure of the OCO-2 sensor during August and early September 2017 led to a gap in the monthly time series 
data.
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Asian terrestrial biosphere. The seasonal pattern of CONTRAIL observations was reproduced by posterior CO2 
constrained by both IS and OCO-2 data (R = 0.97–0.99) much better than the prior (R = 0.92) by correcting the 
high bias of prior model during July–October (Figure 6).

Figure 7 shows the comparison of model simulated CO2 concentrations against surface flask measurements from 
four monitoring stations over South Asia. The representativeness of these four stations has already been studied in 
detail in previous studies and found that these stations are influenced by local sources and sinks, long-range trans-
port, and monsoon circulation (Lin et al., 2015; Nalini et al., 2018; Tiwari et al., 2014; Tiwari, Valsala, Vellore, 
& Kunchala, 2013). Overall, the performance of model simulations in this study against surface flask data from 
these four stations is less accurate compared to the performance against global observations described above. The 
poor performance over these sites could be due to representativeness issues arising from the proximity of local 
emissions and regional biosphere sources to these monitoring stations (Lin et al., 2015, 2018; Tiwari et al., 2014; 
Tiwari, Revadekar, & Ravi Kumar, 2013; Tiwari, Valsala, Vellore, & Kunchala, 2013), difficulties simulating 
transport over complex terrains (e.g., mountain sites), and the coarse resolution of the GEOS-Chem model not 
capturing land/ocean dynamics and complex topography. Note that a previous study (Lin et al., 2018) found poor 
correlation (R < 0.3) in the synoptic variability of CO2 concentrations simulated with a high-spatial-resolution 
(∼0.51° × ∼0.66°) nested regional model compared against flask observations from all four stations considered 
here. Lin et al. (2018) also found that the seasonal amplitude of model-simulated CO2 concentrations was un-
derestimated by ∼30% to 50% when compared against flask data from the SNG, PON, HLE, and PBL stations. 
Another study by Nalini et al.  (2018) found >15 ppm differences in the comparison of GOSAT and Carbon-
Tracker-based model estimates against flask measurements from SNG and another station in India which ceased 
operation in 2012.

Despite the large MB and SDE, Figure 7 shows that the assimilation of OCO-2 LN + LG data leads to some 
improvements in the temporal correlation and slight reductions in SDE compared to prior and IS-based inversions 
(except at the PON station). In particular, OCO-2 data assimilation resulted in the model better capturing the 
temporal variability and seasonality of observations compared to prior and IS data over the HLE station (location 
is characterized by clean background air masses (Lin et al., 2015)). The fact that HLE station is not primarily 
influenced by local sources and sinks, and measures regional free tropospheric air is likely the reason why our 

Figure 6. Comparison of monthly averaged CONTRAIL observed CO2 mixing ratio (ppm) at the altitude range of ∼5 to 13 km near and downwind of the South Asia 
region (see map in the inset) and the values simulated from the prior model and those optimized with in situ (IS) and OCO-2 (LN + LG assimilation) observations. 
Error bars represent the standard deviation of mean monthly values. The legend contains evaluation statistics of monthly mean values during 2015–2016 and the inset 
shows the total number of CONTRAIL observations per grid cell. The cyan bars represent total number of CONTRAIL observations per month.
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model simulations compare most favorably to HLE observations in comparison to the other three stations. Note 
that Swathi et al. (2021) also found a smaller posterior model-data mismatch (<2 ppm) at the HLE site compared 
with PON and PBL sites, while assimilating HLE, PON, and PBL flask data along with global IS data in a global 
inverse system at 2.5° × 3.75° spatial resolution (Chevallier et al., 2010). Over the SNG station, there is large 
seasonal amplitude over SNG site (>30 ppm) which most models (Lin et al., 2018; Nalini et al., 2018) fail to 
represent; however, the OCO-2 constrained posterior improves the temporal correlation (R = 0.66) compared 
to prior (R = 0.41) and IS (R = 0.50) constrained posteriors. Considering the limited evaluation conducted here 
against flask data from four stations (Figure 7), CONTRAIL data near the South Asia region (Figure 6) and 
OCO-2 XCO2 observations (Figure 5), we conclude that OCO-2 data better constrains the seasonality of CO2 
mixing ratios over South Asia compared to prior and IS. A robust evaluation cannot be conducted here due to 
lack of continuous observations over the region (although we acknowledge that there could be other short-term 
measurements over select locations; e.g., Sreenivas et al., 2019) other than the four flask monitoring stations 
considered in this study.

4.5. NBE Flux Seasonality Compared With Vegetation Indices

Figure 4 shows the comparison of South Asian prior and optimized monthly 
NBE against vegetation indices. Table 6 shows the temporal correlation of 
NBE and the vegetation indices. The negative correlation of NDVI, EVI, 
and SIF data against NBE data were expected, since these satellite-retrieved 
variables are highly correlated with estimates of gross primary productivity 
(GPP). Most importantly, this study reveals a much higher correlation (neg-
ative) of NDVI (AVHRR and MODIS) and EVI versus OCO-2 constrained 
NBE (R = −0.73 to −0.85), compared to IS-constrained NBE (R = −0.41 
to −0.59). The CASA prior and IS-constrained NEE are poorly correlated 
with SIF data (R < −0.14); however, the comparison of both GOME-2 and 
OCO-2 derived SIF data against OCO-2 optimized NEE reveals a moder-
ate to strong negative correlation (R = −0.47 to −0.49). SIF retrievals from 
satellites capture the photosynthetic activity of the terrestrial biosphere 

Figure 7. Time series of CO2 flask measurement data (ppm; gray crosses) from four South Asian monitoring stations, and co-sampled CO2 concentrations from the 
prior model (black dots) and model-predictions optimized with IS (blue dots) and OCO-2 LN + LG (red dots) data.

NBE
NDVI 

(AVHRR)
NDVI 

(MODIS)
EVI 

(MODIS)
SIF 

(GOME-2)
SIF 

(OCO-2)

Prior −0.53 −0.40 −0.18 0.07 0.18

IS −0.71 −0.68 −0.47 −0.16 −0.10

OCO-2 −0.87 −0.89 −0.77 −0.50 −0.47

LPJ −0.85 −0.95 −0.87 −0.64 −0.63

Table 6 
Correlation Coefficients Between Multi-Year Monthly Mean Vegetative 
Indices (NDVI, EVI, and SIF) and NBE From the Prior and Posterior 
(Using IS and OCO-2 LN + LG Observations) and the LPJ Biosphere 
Model
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(Frankenberg et al., 2016) and have been found to help constrain regional-scale NEE spatiotemporal variability 
(Shiga et al., 2018; Sun et al., 2017) and could be a better proxy of photosynthesis than EVI (Luus et al., 2017). 
In general, the OCO-2 constrained NBE are better correlated with satellite-based NDVI, EVI, and SIF data 
compared to prior and IS-constrained model simulations. Since we used a diagnostic model as a prior in inverse 
model simulations, we also compare NBE from a fully prognostic meteorologically driven biosphere model 
(LPJ; Poulter et al., 2014) to the same set of vegetation indices. Even though the LPJ model was not driven with 
vegetative index data, LPJ NBE shows large negative correlation with all satellite-based variables, such as NDVI, 
EVI, and SIF. Overall, from the strong temporal correlation of OCO-2 optimized NBE against satellite-based 
NDVI, EVI, and SIF data, the better agreement of OCO-2 optimized CO2 mole fraction and XCO2 data against 
independent measurements (Section 4.4), and the consistency of OCO-2 optimized flux seasonality compared 
with past studies assimilating regional observations (Section 4.3), we conclude that the seasonal variability of the 
OCO-2 constrained NBE in South Asia is robust.

5. Conclusions
We examined the annual, interannual, and seasonal cycle of terrestrial biospheric CO2 fluxes over South Asia re-
gion by assimilating OCO-2 satellite CO2 column retrievals in a global top-down inversion model. We conducted 
global inverse model simulations using the OCO-2 version 9 retrievals and global IS observations, and analyzed 
posterior NBE aggregated over South Asia from 2015 to 2018. The flux inversion system was evaluated by com-
paring the optimized atmospheric CO2 concentration fields against global and regional observations.

This study determined that between 2015 and 2018, the South Asian terrestrial biosphere is near-neutral, with a 
multi-year mean annual NBE of 0.04 ± 0.14 PgC yr−1 estimated from both IS or OCO-2 (LN + LG) observations. 
We find contrasting posterior annual NBE anomaly values using IS (positive NBE anomaly of 0.19 PgC yr−1 
for 2015) versus OCO-2 (positive NBE anomaly of ∼0.11  PgC  yr−1 for 2016–2017) observations. The most 
striking result found from assimilating OCO-2 observations was the constraint imposed on the seasonal cycle 
of NBE fluxes. The seasonality of South Asian NEE estimated by assimilating OCO-2 data showed a larger 
seasonal cycle compared to the current understanding of NEE in this region (represented by the prior NEE used 
in the model and MsTMIP ensemble mean NEE). The OCO-2 LN + LG inversion led to NBE seasonal ampli-
tude of 0.34 PgC month−1, compared to 0.19 PgC month−1 in the IS-based inversion, 0.11 PgC month−1 in the 
prior model, and 0.16 PgC month−1 in the MsTMIP ensemble mean NEE product. Three previous studies (Jiang 
et al., 2014; Niwa et al., 2012; Patra et al., 2011), assimilating regional aircraft CO2 measurements in addition to 
global surface data, also found larger seasonal amplitudes for the South Asian region (0.25–0.29 PgC month−1). 
We find that OCO-2 data also imposed a phase shift in the seasonal cycle, resulting in the largest CO2 source 
occurring in April and a largest uptake in September. The NBE peak source/sink months in April/September are 
generally consistent with regional IS data assimilation model studies (Jiang et al., 2014; Niwa et al., 2012; Patra 
et al., 2011). The seasonality of OCO-2 optimized NBE had better correlation with satellite-retrieved vegetation 
indices (NDVI, EVI, and SIF data) than the prior and IS constrained NBE estimates. This study therefore suggests 
that the seasonality imposed by OCO-2 data over South Asia is robust, and OCO-2 satellite can be effectively 
used to optimize biospheric carbon processes on a sub-regional scale in a similar manner as regional aircraft in 
situ data networks.

To our understanding, this is the first study analyzing OCO-2 constrained terrestrial biospheric CO2 fluxes over 
a small region/sub-continent, at smaller spatial scales compared to TransCom-3 regions, or latitude bands as 
assessed by previous studies. A robust evaluation of the inversion system used in this research, and its inferred 
fluxes, cannot be conducted over South Asia due to lack of continuous observations. Therefore, the findings from 
this article should be examined in future studies assimilating in situ and vertically resolved observations along 
with satellite data in a regional inverse modeling system. The expansion of observational networks over South 
Asia in recent years (e.g., Lin et al., 2015; Nalini et al., 2019; Tiwari et al., 2014) could help such regional inverse 
modeling efforts.
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Data Availability Statement
The forward and inverse model simulations for this work were performed using the GEOS-Chem model, which 
is publicly available at http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint. The Carbon-
Tracker CT2019 fluxes used as prior information in the model simulations can be accessed from the website 
http://carbontracker.noaa.gov. The CarbonTracker CT2019 documentation is available at https://www.esrl.noaa.
gov/gmd/ccgg/carbontracker/CT2019_doc.php. For this study, we used OCO-2 10-s average XCO2 data and 
corresponding error estimates from ftp.cira.colostate.edu:/ftp/BAKER/OCO2_b91_10sec_GOOD_r24.nc4. The 
OCO-2 individual sounding data can be downloaded from https://oco.jpl.nasa.gov. We used the ObsPack data 
packaged for the OCO-2 v9 MIP (https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_co2_1_
OCO2MIP_v2.1_2019-08-15). The protocol of the OCO-2 v9 MIP, details of input data, and validation statistics 
can be accessed from https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/. The OCO-2 and ObsPack data can 
also be downloaded from https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/download.php. The growth rate of 
atmospheric CO2 mixing ratios is documented at NOAA-ESRL website (https://www.esrl.noaa.gov/gmd/ccgg/
trends/gl_gr.html). The CONTRAIL (doi: https://doi.org/10.17595/20180208.001) data for 2015–2016 available 
publicly as part of the ObsPack data package was used for model evaluation. Tracks of CONTRAIL flights can 
be accessed here: http://www.cger.nies.go.jp/contrail/fstatis2015.html. NDVI and EVI data were collected from 
the MODIS instrument on the Terra satellite (MOD13C2 Climate Modeling Grid (CMG) Version 6, https://doi.
org/10.5067/MODIS/MOD13C2.006) and AVHRR sensor (doi: https://doi.org/10.7289/V5ZG6QH9). We used 
SIF data from OCO-2 (SIFoco2_005; doi: https://doi.org/10.3334/ORNLDAAC/1696) and GOME-2 (https://
avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/v28/MetOp-B/level3/).
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